CO2 激光外差探测的大气影响*

中国科学院安徽光机所二室**

提 要

本文扼要介绍用来研究大气湍流影响的 10.6 微米 CO₂ 激光外差探 测技术;通 过外差效率随大气湍流强度而变的实验,着重研究大气湍流引起空间相干性的退化。 分别在 1 和 8 公里距离上,在不同的湍流强度情况下,完成了外差效率的测试工作。 结果表明,在中等湍流强度下, ϕ 300 毫米以下的接收口径,大气光学效应对外差效 率的影响不大。与 D. L.Fried 的理论(在 $D \ll r_0$ 的情形下)相吻合。

一、问题的提出

随着激光应用的不断发展,特别在激光 测距、雷达、通讯等方面,要求增大作用距离, 提高精度以及提高对运动物体的空间和频率 鉴别等。外差探测就是根据应用需要而出现 的一种较新的相干探测技术,它在10.6 微米 波长处比直接探测的灵敏度高3~4个数量 级(带宽为100千赫),一般不受探测器本身 噪声和大气背景噪声的影响。外差法测运动 目标反射信号的多普勒频移,作成激光雷达, 有希望达到理想光接收机的水平。外差探测 能准确测定运动目标的空间位置,对变化频 率敏感,频率鉴别力高。

然而,在外差应用装置中,接收系统比直 接探测系统要复杂,对设备的精度要求也高, 这给技术上带来很多困难。外差接收又要求 光信号相位、偏振稳定,但光信号在大气中传 输时,除信号衰减外,因大气湍流影响,使光 信号波前畸变,与本机振荡辐射在相位和偏 振的匹配困难,严重地影响着外差接收的实 现。

为了研究传输介质对外差探测影响的严

重程度,我们于1975年10月到11月期间, 在合肥地区进行了实验,传输距离为1和8 公里,前者在安徽光机所的两幢楼间,下垫面 较复杂,光束离地面高度约12~14米;后者 是在安徽光机所和通用机械所两幢楼间,下 垫面基本上是水面,光束离水面约14米。我 们选择不同天气和时间,测量了外差效率的 变化情况,同时由安徽光机所用温度脉动仪 纪录了表征大气湍流强度的折射率结构常数 *C*_n值。实验只限在 ϕ 300 毫米 以下孔径的 光学系统上进行。

二、基本原理

1. 外差探测的基本原理

当频率分别为ω₁、ω₂的两束平行相干 光(信号光束和本振光束),同时射到具有平 方律特性的探测器时(图1),由于探测器的 时间常数所限制,不能响应光频及其倍频,只 对差频有响应⁽¹⁾。

在探测器上的响应为

^{*} 收稿日期: 1978年7月31日。

^{**} 本工作由原长春光机所大气光学组完成,孙毅义同志整理。

$$\gamma = \frac{\beta}{2}(E_1^2 + E_2^2)$$

+ $\beta E_1 E_2 \cos (\omega_1 - \omega_2) t$ (1) 其中 β 为比例常数; $E_1 \ \pi E_2 \ \beta$ 别为信号光 和本振光的场强。

外差探测就是指对交流信号的响应。由 (1)式可见,为了提高对微弱信号 *E*₁的响应,只要加大本振光的能量。可以证明外差 探测的信噪比为:

$$(S/N)_{\eta \bar{\Psi}} = \eta \frac{P_1}{h\nu \Delta f}, \qquad (2)$$

其中 *P*₁——信号功率; η——探测器的量子 效率; 4f——测量带宽; *hv*——激光光子能 量。

当 $(S/N)_{me}=1$ 时,最小可探测的信号 功率为

$$P_{1\min} = \frac{h\nu}{\eta} \Delta f_{0}$$

由此可见,外差探测法不受探测器本身噪声的限制,而从理论上可探测到量子极限。当 $\eta=1$ 、 $\Delta f=1$ 时,可探测到一个光子。

2. 影响外差探测的几个因素

根据上述基本原理,外差接收是以两个 不同频率、相同偏振的光束在探测器上空间 相干为前提,经平方律特性的探测器取出拍 频。若空间相干性受破坏,就会严重地影响 外差效果。使空间相干性变坏的原因,可归 纳为下列四个方面^[2]:

 两光束不完全平行入射在探测面上, 而它们之间有一个小角度;

2. 光束偏振方向的变化;

3. 光束在光电接收面上的移动;

4. 在传输过程中,由于大气湍流引起波

阵面的变化。

这些因素处理恰当与否是外差接收机成 败的关键。如信号光束和本振光束不完全平 行而有一夹角 θ 入射时,外差效率将随 θ 的 加大而下降(图 2);同时因不平行入 射造成 探测器面上两光斑不完全重迭,也使外差效 率明显下降。因此我们在实验中特别注意调 整了两光束的平行和光斑的重迭;至于由大 气湍流使光束到达角变化引起光点的移动也 作了监测。限于篇幅,不予详细讨论。

图 2 在 10.6 微米波长上, 探测器面的线度为 1 毫米情况下, 外差效率与两光束的夹角关系

3. 大气的影响

由于地球表面大气层温度分布不均匀以 及气流的不稳定,使得大气层的媒质具有随 机不均匀性。当激光穿过折射率呈不规则变 化的空气时,这一光束的波前发生畸变,光束 大小、位置以及光束内部的强度分布就出现 起伏,因此,外差接收效率总是小于1的。

根据分析^[3],没有大气干扰影响时,直径 为 D 的圆接收孔径上,单位带宽上外差探测 的信噪比为

$$S/N = (\eta/e) \left(\frac{\pi}{8}\right) D^2 E_1^2,$$
 (3)

由于大气湍流的影响,在探测器表面,信号与本机振荡只能部分相干,它们的相干程度决定于大气湍流情况和接收天线的面积,D.L. Fried^{[31} 采用了 Kolmogoroff 局地均匀、各向同性的湍流理论后,求得大气使波前畸变 情况下,外差探测的信噪比:

$$\frac{\langle S' \rangle}{N} = \left(\frac{\eta}{h\nu \, \Delta f}\right) \overline{E_1^2} \left(\frac{\pi}{8}\right) r_0^2 \psi\left(\frac{D}{r_0}\right)$$
(4)

其中

$$\psi\left(\frac{D}{r_0}\right) = (32/\pi r_0^2 D^2)$$
$$\times \int_0^D r dr K_0(r) \exp\left[-\frac{1}{2}\mathscr{D}(r)\right]_0$$
(5)

 $\langle S' \rangle$ 是经过大气湍流影响后探测到的信号功 率 S'的系综 平均; r为空间两点的间距; $\mathcal{D}(r)$ 表示大气影响的波结构函数,它是相位 结构函数 $\mathcal{D}_{\phi}(r)$ 和对数振幅结构函数 $\mathcal{D}_{l}(r)$ 之和,是一个空间相关函数,表示空间两点随 机起伏的相关程度。

$$egin{aligned} &=& \left\{ egin{aligned} &rac{1}{2} [D^2 \cos^{-1}(r/D) - r(D^2 - r^2)^{1/2}] & r \leqslant D \ &0 & r > D \end{aligned}
ight. \end{aligned}$$

其中

 $r_0 = 1.2 \times 10^{-8} \lambda^{6/5} L^{-3/5} C_n^{-6/5}$ 。 (6) ro 用米表示; λ 为激光波长,以微米表示; L为传输距离,用米表示; C_n^2 以米^{-2/3} 为单位。

比较有、无大气干扰影响的信噪比表示 式(3)和(4)可得:

$$\varepsilon = \left(\frac{\langle S' \rangle}{N}\right) / \left(\frac{S}{N}\right) = \frac{r_0^2}{D^2} \psi\left(\frac{D}{r_0}\right)$$

由于(S/N)是理想条件下所得到的信噪 功率比,因此 $\left(\frac{r_0^2}{D^2}\right)\psi\left(\frac{D}{r_0}\right)$ 的数值代表非理 想与理想情况的比值称为外差接收的效率 ε_o

对(5)式作数值计算,结果示于图3。

由图 3 可见,当 *D*/*r*o<1时,曲线接近直 线,即归一化信噪比随着接收孔径的增大而 增大,此时大气光学效应不明显;但是,随着 *D*的增加,归一化信噪比的改善逐渐不明显, 在 *D*=*r*o 处,曲线呈明显的弯曲;当 *D*/*r*o→ ∞时,归一化信噪比将不因加大接收孔径而 得到改善。因此,可以认为 *r*o 是最佳接收直

图 3 归一化信噪比 $\psi(D/r_0)$ 与归一化 直径 D/r_0 的关系

径。此时几乎可以得到最大可能的 信 噪 比, 这就是 ro 的物理意义。

(6)式表明光外差探测技术在大气中应 用时,当传输距离相同,采用较长的波长具有 明显的优越性,3.5微米比0.63微米的ro 增加10倍,而10.6微米比0.63微米增加 30倍,由此可见大气湍流对10.6微米光束 波前产生的畸变远较0.63微米的小。

三、实验装置

为避免信号光束因反射器带来的一些干 扰,我们采用单次传输的光外差探测。

实验用的 CO₂ 激光器是 单模、单频管, 在实验时,可以调节压电晶体的电压,改变腔 长,控制激光频率的变化以保证两管正常外 差,激光器输出功率5 瓦左右。

实验装置简图见图 4。发射端不加天 线,使用氦-氛激光器导光。接收天线是一个 口径 φ300 毫米的 10 倍反射望远系统。主 镜焦长1.8米,所有光学零件的加工精度均

图 4 实验装置简图

• 54 •

满足 λ/20 的要求。在接收面上的光斑 直径 约 $\phi 0.05$ 毫米。使用 77K 的 HgCdTe 元件作 探测器, 接收面积为 A=0.5 毫米², 响应度 K~80 毫伏/毫瓦; 放大器带宽为7兆赫。为 了测量和比较方便,在实验时,取本振功率约 等于信号功率。

因探测器和放大器的线性范围小, 在光 路中两处插入CaF2 衰减片, 使输入能量限 制在0.1毫瓦以下,其中接收器前的CaF2衰 减片同时兼作分束板, 使读数显微镜可随时 对信号和本振的氦-氖激光光斑重合情况进 行监视, 保证外差工作良好; 并可粗略地测 量氦-氖激光到达角的起伏,以便大概估算当 时的湍流强度。

锗分束板用作混频器。为使本振光路中 氦-氖光的透过,在锗分束板中心开了一个 φ5毫米的斜孔。

本振光路是根据与信号波面完全重迭的 原则安排的。

实验结果直接在示波器上读出, 由于放 大器的放大倍率只在2兆赫以下与频率无 关,我们取外差频率低于1兆赫时,进行最大 外差信号功率 P_{IFmax} (峰峰值)的读数。测 量本振功率和信号功率时,加上800周机械 调制盘后,在示波器上读出本振功率 P_2 和信 号功率 P1 的峰峰值。由于 800 周调制 深度 约为 1/2, 所以外差探测效率:

 $\varepsilon = P_{IF \max} / 4 \sqrt{P_1 P_2}$

在实验过程中,同时由安徽光机所用温 度脉动仪纪录了 Cn 的变化。

四、实验结果和讨论

由于接收望远镜孔径的限制, 打算通过 变孔径的方法求取 ro (合理设计孔径)的要 求无法实现。采取了在固定孔径下求外差效 率 ε 随 C_n^2 改变的情形。在作 1 公里距离实 验时,遇到了雾、雨、阴、晴各种天气, C² 值 也由5×10-15 变到10-17 米-2/3;在8公里 实验时,天气以晴好为主, C_n^2 值在 5×10^{-16} ~10-17 的范围内。但无论在1或8公里距 离上,外差效率 ε 几乎没有明显的变化,每次 实验时只要细心调整(消除系统的机械不稳 定和光束慢漂移的影响),外差效率总可保持 在80%以上。表1列出了其中一天的观测 结果。说明 φ 300 毫米以下的接收孔径作为 外差探测时,在中等湍流强度条件下,大气湍 流对相干性的破坏可以不予考虑。

表1 实验结果

时	间	外差 信号 (相对) 单位)	本振 信号 (相对) 単位)	探测 信号 (相对) 单位)	效率	C_n^2 ($*^{-2/3}$)
11月6日	13.20	3.5	1.8	0.7	0.80	
	14.05	3.5	2.5	0.7	0.80	
	14.20	4.0	1.8	0.7	0.91	
	15.10	5.0	1.0	2.0	0.90	
	15.15	4.6	1.0	2.0	0.82	
	15.40	3.8	0.9	1.2	0.92	1.93×10^{-17}
						1.30×10^{-17}
	16.15	3.2	0.8	0.9	0.94	
	16.30	3.8	1.1	1.3	0.79	$3.70 imes 10^{-16}$
						6.25×10^{-16}

注: Cn 值由安徽光机所测量。由于实验没有配合好, 只取了几个 Cn 值,以供参考。行间 Cn 值为两时间间的数 值。

在实验中采用的天线口径D=0.3米, 传输距离 8 公里,在 $C_n^2 = 5 \times 10^{-16} \text{ *}^{-2/3}$ 情 形下,可算得:

$$D/r_0 = 0.214,$$

根据图3得

$$\psi\left(\frac{D}{r_0}\right) = 4.5 \times 10^{-2}$$
,

 $\epsilon = 0.98$, 求得

在 C_n²=1×10⁻¹⁶ 米^{-2/3} 情形下, 算得:

$$D/r_0 = 0.09, \quad \psi\left(\frac{D}{r_0}\right) \approx 8 \times 10^{-3}$$
得到 $\varepsilon = 0.99_{\circ}$

 $\varepsilon = 0.99$

上面的计算表明, 在我们的实验条件

· 55 ·

下,外差效率不会有明显的变化,即处于 $D \ll r_o$ 的范围内,受大气影响小。必须指出, 因实验条件的欠缺,以及光路调整精度的影 响,如两光束不完全平行,到达角起伏引起两 光束不重迭等等,我们只测量了外差信号的 峰峰值,在计算外差效率时,采用了外差信号 峰峰值的均方值,与 D. L. Fried 所用的外 差信号的时间平均的均方值不同,因此两者 不能作直接比较,但根据外差效率都没有什 么变化的比较,是能说明问题的。

实验中各种因素引起的总误差不大于 20%。

我们还作了外差效率与孔径关系的研究,结果见表 2,表明在 $C_n^2 = 5 \times 10^{-16} \times 2^{-2/3}$ 的情形下,接收器口径从 ϕ 150 毫米变化到 ϕ 300 毫米,而相对效率几乎不变。根据D. L. Fried 的理论考虑,我们也计算了变孔径使效率的变化,结果见表 3。显然,在上述

LEASTER MALL			
口 径 (毫米)	外差信号 (相对单位)	直接信号 (相对单位)	相对效率 0.96 ~1 0.99
ϕ 300	4.6	4.2	
$\phi 230$	3.4	2.1	
$\phi 150$	1.8	0.6	
	11月6	5日数据	
φ 300	4.0	3.4	0.98
$\phi 230$	2.8	1.8	0.95
φ150 1.7		0.6	1

表² 外差效率与孔径关系 10月29日数据

(上接第58页)

上半波电压后,光线就立刻改由棱镜的 b 处 输出。采用同样的办法,使这束光最后由另 一个方位角射向全息底片的同一位置,把这 样的棱镜和电光晶体恰当地组合起来,就不 难使多束参考光束各从不同的方位角射向全

表 3 根据 D. L. Fried 理论计算 的效率与孔径关系

	(毫米)	径	效	率	
. 1.	φ 300	1.71.71.7	0.9	98	1
	$\phi 230$		0.9	98	
	$\phi 150$		~	1	

情况下,孔径的改变没有引起外差效率的明 显变化,又一次证明了上述结论。

但是应当指出,由于我们的实验是在秋 末进行的,而且测量装置均放在四层楼房内, 下垫面基本上是水面,因此没有出现很大的 Oⁿ,值。为了使上述结论更有说服力,应该在 湍流更强烈的季节和环境下进行实验;另外, φ300 毫米的接收口径在实际应用上还不够 大,为了求得合理的设计孔径,应该用大孔径 望远系统作变孔径的实验;在实验中还发现 随着 Oⁿ_n的增大,信号光束漂移加大,这将使 外差探测的实际应用带来不少麻烦。

我们的实验工作还很初步,所得结果带 有一定的局限性。因此,外差探测的实际应 用,还有很多问题需作更进一步的研究和探 讨。

参考文献

- [1] 《激光与红外》, 1971年, No. 1, p. 25.
- [2] 本田辰笃, 电气试验所汇报, 32, No. 1, p. 161 (1968)、
- [3] D. L. Fried, Proc. IEEE, 55(1967), pp. 57~67.

息底片的同一位置,在全息底片的同一位置 可记录下多幅全息图,而各幅可分别再现,亦 可使其中任一幅同时再现,以使发生干涉。由 干涉条纹的形状、密度和数量,了解它们之间 所产生的相对变化。